IT科技

Python常用的算法——贪心算法(又称贪婪算法),你知道吗?

时间:2010-12-5 17:23:32  作者:IT科技   来源:IT科技类资讯  查看:  评论:0
内容摘要:贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是好的选择。也就是说,不从整体最优上加以考虑,他所做出的的时在某种意义上的局部最优解。贪心算法并不保证会得到最优解,但是在某些问题上贪心

贪心算法(又称贪婪算法)是常用称贪指,在对问题求解时,算道总是法贪法又法知做出在当前看来是好的选择。也就是心算说,不从整体最优上加以考虑,婪算他所做出的常用称贪的时在某种意义上的局部最优解。

贪心算法并不保证会得到最优解,算道但是法贪法又法知在某些问题上贪心算法的解就是最优解。要会判断一个问题能否用贪心算法来计算。心算贪心算法和其他算法比较有明显的婪算区别,动态规划每次都是常用称贪综合所有问题的子问题的解得到当前的最优解(全局最优解),而不是算道贪心地选择;回溯法是尝试选择一条路,如果选择错了的法贪法又法知话可以“反悔”,也就是心算回过头来重新选择其他的服务器租用试试。

1 找零问题

假设商店老板需要找零 n 元钱,婪算钱币的面额有100元,50元,20元,5元,1元,如何找零使得所需钱币的数量最少?(注意:没有10元的面额)

那要是找376元零钱呢? 100*3+50*1+20*1+5*1+1*1=375

代码如下:

# t表示商店有的零钱的面额 t = [100, 50, 20, 5, 1] # n 表示n元钱 def change(t, n):  m = [0 for _ in range(len(t))]  for i, money in enumerate(t):  m[i] = n // money # 除法向下取整  n = n % money # 除法取余  return m, n print(change(t, 376)) # ([3, 1, 1, 1, 1], 0) 

2 背包问题

常见的背包问题有整数背包和部分背包问题。那问题的描述大致是这样的。

一个小偷在某个商店发现有 n 个商品,第 i 个商品价值 Vi元,重 Wi 千克。他希望拿走的价值尽量高,但他的背包最多只能容纳W千克的东西。他应该拿走那些商品?

0-1背包:对于一个商品,小偷要么把他完整拿走,要么留下。不能只拿走一部分,或把一个商品拿走多次(商品为金条) 分数背包:对于一个商品,小偷可以拿走其中任意一部分。云服务器(商品为金砂)

举例: 

对于 0-1 背包 和 分数背包,贪心算法是否都能得到最优解?为什么?

显然,贪心算法对于分数背包肯定能得到最优解,我们计算每个物品的单位重量的价值,然后将他们降序排序,接着开始拿物品,只要装得下全部的该类物品那么就可以全装进去,如果不能全部装下就装部分进去直到背包装满为止。

而对于此问题来说,显然0-1背包肯定装不满。即使偶然可以,但是也不能满足所有0-1背包问题。0-1背包(又叫整数背包问题)还可以分为两种:一种是每类物品数量都是有限的(bounded)。一种是数量无限(unbounded),也就是你想要的多少有多少,这两种都不能使用贪心策略。0-1背包是典型的第一种整数背包问题。

分数背包代码实现:

# 每个商品元组表示(价格,重量) goods = [(60, 10), (100, 20), (120, 30)] # 我们需要对商品首先进行排序,当然这里是源码下载排好序的 goods.sort(key=lambda x: x[0]/x[1], reverse=True) # w 表示背包的容量 def fractional_backpack(goods, w):  # m 表示每个商品拿走多少个  total_v = 0  m = [0 for _ in range(len(goods))]  for i, (prize, weight) in enumerate(goods):  if w >= weight:  m[i] = 1  total_v += prize  w -= weight  # m[i] = 1 if w>= weight else weight / w  else:  m[i] = w / weight  total_v += m[i]*prize  w = 0  break  return m, total_v res1, res2 = fractional_backpack(goods, 50) print(res1, res2) # [1, 1, 0.6666666666666666] 1.3 拼接最大数字问题 

有 n 个非负数,将其按照字符串拼接的方式拼接为一个整数。如何拼接可以使得得到的整数最大?

例如:32, 94, 128, 1286, 6, 71 可以拼接成的最大整数为 94716321286128.

注意1:字符串比较数字大小和整数比较数字大小不一样!!! 字符串比较大小就是首先看第一位,大的就大,可是一个字符串长,一个字符串短如何比较呢?比如128和1286比较

思路如下:

# 简单的:当两个等位数相比较

a = 96 b = 97 a + b if a > b else b + a 

# 当出现了下面的不等位数相比较,如何使用贪心算法呢?

# 我们转化思路,拼接字符串,比较结果

 a = 128 b = 1286  # 字符串相加 a + b = 1281286 b + a = 1286128 a + b if a + b > b + a else b + a 

数字拼接代码如下:

from functools import cmp_to_key li = [32, 94, 128, 1286, 6, 71] def xy_cmp(x, y):  # 其中1表示x>y,-1,0同理  if x+y < y+x:  return 1  elif x+y > y+x:  return -1  else:  return 0 def number_join(li):  li = list(map(str, li))  li.sort(key=cmp_to_key(xy_cmp))  return "".join(li) print(number_join(li)) # 94716321286128 

4 活动选择问题

假设有 n 个活动,这些活动要占用同一片场地,而场地在某时刻只能供一个活动使用。

每一个活动都有一个开始时间 Si 和结束时间 Fi (题目中时间以整数表示)表示活动在 [Si, fi) 区间占用场地。(注意:左开右闭)

问:安排哪些活动能够使该场地举办的活动的个数最多? 

贪心结论:最先结束的活动一定是最优解的一部分。

证明:假设 a 是所有活动中最先结束的活动,b是最优解中最先结束的活动。

如果 a=b,结论成立

如果 a!=b,则 b 的结束时间一定晚于 a 的结束时间,则此时用 a 替换掉最优解中的 b ,a 一定不与最优解中的其他活动时间重叠,因此替换后的解也是最优解。

代码如下:

# 一个元组表示一个活动,(开始时间,结束时间) activities = [(1, 4), (3, 5), (0, 6), (5, 7), (3, 9), (5, 9), (6, 10), (8, 11),  (8, 12), (2, 14), (12, 16)] # 保证活动是按照结束时间排好序,我们可以自己先排序 activities.sort(key=lambda x:x[1]) def activity_selection(a):  # 首先a[0] 肯定是最早结束的  res = [a[0]]  for i in range(1, len(a)):  if a[i][0] >= res[-1][1]: # 当前活动的开始时间小于等于最后一个入选活动的结束时间  # 不冲突  res.append(a[i])  return res res = activity_selection(activities) print(res) 

5 最大子序和

求最大子数组之和的问题就是给定一个整数数组(数组元素有负有正),求其连续子数组之和的最大值。下面使用贪心算法逐个遍历。

代码如下:

def maxSubarray(li):  s_max, s_sum = 0, 0  for i in range(len(li)):  s_sum += li[i]  s_max = max(s_max, s_sum)  if s_sum < 0:  s_sum = 0  return s_max 
copyright © 2025 powered by 益强资讯全景  滇ICP备2023006006号-31sitemap