图片来源:__mxin
reactivepackages/reactivity/src/reactive.ts
// 扩展被代理对象的源应式原理标志属性声明 export interface Target { [ReactiveFlags.SKIP]?: boolean //是否是不可代理对象,被markRaw()过则为true [ReactiveFlags.IS_REACTIVE]?码分: boolean //是否被reactive代理过 [ReactiveFlags.IS_READONLY]?: boolean //是否被readonly代理过 [ReactiveFlags.RAW]?: any //被代理的原对象 const p = reactive(obj); p[ReactiveFlags.RAW] === obj 为true } function targetTypeMap(rawType: string) { switch (rawType) { case Object: case Array: return TargetType.COMMON // 普通引用类型 case Map: case Set: case WeakMap: case WeakSet: return TargetType.COLLECTION // 集合引用类型 default: return TargetType.INVALID // invalid不可被代理的基本数据类型 int boolean string } } // 运用ts函数重载机制让reactive有2种不同类型的入参、返回 export function reactive<T extends object>(target: T): UnwrapNestedRefs<T> export function reactive(target: object) { // if trying to observe a readonly proxy,析讲 return the readonly version. if (target && (target as Target)[ReactiveFlags.IS_READONLY]) { return target } return createReactiveObject( target, false, // isReadonly mutableHandlers, // 用于Object Array 类型创建Proxy mutableCollectionHandlers // 用于Set Map WeakSet WeakMap 类型创建Proxy ) } // 创建响应式代理对象 function createReactiveObject( target: Target, isReadonly: boolean, baseHandlers: ProxyHandler<any>, collectionHandlers: ProxyHandler<any> ) { // target已经被代理过,并且不是透响为了将响应式对象变为只读则直接返回 if ( target[ReactiveFlags.RAW] && !(isReadonly && target[ReactiveFlags.IS_REACTIVE]) ) { return target } // 从缓存(readonlyMap,reactiveMap)中查找,如果已经被代理过则直接返回 const proxyMap = isReadonly ?源应式原理 readonlyMap : reactiveMap const existingProxy = proxyMap.get(target) if (existingProxy) { return existingProxy } // 只有非基本类型类能被响应式 const targetType = getTargetType(target) if (targetType === TargetType.INVALID) { // 是否是基本类型 return target } const proxy = new Proxy( target, targetType === TargetType.COLLECTION ? collectionHandlers : baseHandlers ) proxyMap.set(target, proxy) // 缓存新代理后的对象 return proxy }packages/reactivity/src/baseHandles.ts
// mutableHandlers是Proxy的代理配置,const r = new Proxy(obj,码分mutableHandlers) export const mutableHandlers: ProxyHandler<object> = { get: createGetter, set: createSetter, deleteProperty, has, ownKeys } function createGetter(isReadonly = false, shallow = false) { return function get(target: Target, key: string | symbol, receiver: object) { if (key === ReactiveFlags.IS_REACTIVE) { return !isReadonly } else if (key === ReactiveFlags.IS_READONLY) { return isReadonly } else if ( key === ReactiveFlags.RAW && receiver === (isReadonly ? readonlyMap : reactiveMap).get(target) ) { // 如果key是__v_raw未被代理标记属性且target已被响应式代理过,则直接返回该代理的析讲原对象 // 应用场景 const originObj = toRaw(reactive(obj)); originObj === obj 为 true return target } const targetIsArray = isArray(target) if (!isReadonly && targetIsArray && hasOwn(arrayInstrumentations, key)) { // 代理数组的 includes, indexOf, lastIndexOf 方法并触发依赖收集 // 代理数组的 push, pop, shift, unshift, splice 并触发依赖的副作用effect return Reflect.get(arrayInstrumentations, key, receiver) } const res = Reflect.get(target, key, receiver) if ( isSymbol(key) ? builtInSymbols.has(key as symbol) : key === `__proto__` || key === `__v_isRef` ) { return res } if (!isReadonly) { // 如果不是只读代理触发依赖收集 track(target, TrackOpTypes.GET, key) } // 如果是shallowReactive()直接返回结果,如果target[key]是透响引用类型则对该值进行响应式收集 // 这里充分说明了vue3 reactive()的时候只代理了target的属性这一层,只有当访问target的源应式原理某一个引用类型属性时才向下继续代理一层,云服务器而不是码分像vue2一样在初始化的时候迭代代理所有引用类型 if (shallow) { return res } if (isRef(res)) { const shouldUnwrap = !targetIsArray || !isIntegerKey(key) return shouldUnwrap ? res.value : res } if (isObject(res)) { return isReadonly ? readonly(res) : reactive(res) } return res } } function createSetter(shallow = false) { return function set( target: object, key: string | symbol, value: unknown, receiver: object ): boolean { const oldValue = (target as any)[key] if (!shallow) { value = toRaw(value) if (!isArray(target) && isRef(oldValue) && !isRef(value)) { // 如果不是数组,且旧值是析讲ref类型,新值不是透响ref类型 oldValue.value = value return true } } else { // 如果是shallowReactive()返回的proxy,修改其属性时不会触发响应式副作用effect } // 如果是源应式原理对象返回true,如果是码分数组看是否是合法下标或length indexOf push等自有属性 const hadKey = isArray(target) && isIntegerKey(key) ? Number(key) < target.length : hasOwn(target, key) const result = Reflect.set(target, key, value, receiver) // dont trigger if target is something up in the prototype chain of original if (target === toRaw(receiver)) { if (!hadKey) { // 触发该属性的副作用effect,且类型为新增属性 trigger(target,析讲 TriggerOpTypes.ADD, key, value) } else if (hasChanged(value, oldValue)) { // 触发该属性的副作用effect,且类型为修改属性 trigger(target, TriggerOpTypes.SET, key, value, oldValue) } } return result } } // 代理target的deleteProperty方法,在删除成功后触发依赖的副作用effect function deleteProperty(target: object, key: string | symbol): boolean { const hadKey = hasOwn(target, key) const oldValue = (target as any)[key] const result = Reflect.deleteProperty(target, key) if (result && hadKey) { // 如果属性存在并删除成功,触发依赖该属性的副作用effect trigger(target, TriggerOpTypes.DELETE, key, undefined, oldValue) } return result } // 代理target的has方法,触发该属性的依赖收集 function has(target: object, key: string | symbol): boolean { const result = Reflect.has(target, key) if (!isSymbol(key) || !builtInSymbols.has(key)) { // 如果不是symbol类型则触发对该属性依赖的收集 track(target, TrackOpTypes.HAS, key) } return result } // 代理target的ownKeys方法,触发该属性的依赖收集 function ownKeys(target: object): (string | number | symbol)[] { // 触发对该属性依赖的亿华云收集 track(target, TrackOpTypes.ITERATE, isArray(target) ? length : ITERATE_KEY) return Reflect.ownKeys(target) }readonly
export function readonly<T extends object>( target: T ): DeepReadonly<UnwrapNestedRefs<T>> { return createReactiveObject( target, true, // isReadonly readonlyHandlers, // 用于Object Array 类型创建Proxy readonlyCollectionHandlers // 用于Set Map WeakSet WeakMap 类型创建Proxy ) } export const readonlyHandlers: ProxyHandler<object> = { get: readonlyGet, // 与reactive 的 createGetter一样,只是第一个参数为true set(target, key) { if (__DEV__) { console.warn( `Set operation on key "${ String(key)}" failed: target is readonly.`, target ) } return true }, deleteProperty(target, key) { if (__DEV__) { console.warn( `Delete operation on key "${ String(key)}" failed: target is readonly.`, target ) } return true } }ref
// 运用ts函数重载机制让ref有4种不同类型的入参、返回 export function ref<T extends object>(value: T): ToRef<T> export function ref<T>(value: T): Ref<UnwrapRef<T>> export function ref<T = any>(): Ref<T | undefined> export function ref(value?: unknown) { return createRef(value) } // ref底层不是通过proxy实现的,而是自定义类RefImpl function createRef(rawValue: unknown, shallow = false) { if (isRef(rawValue)) { return rawValue } return new RefImpl(rawValue, shallow) } // 将原始数据存储在_value,拦截定义value属性的get set方法实现依赖收集和修改更新响应 class RefImpl<T> { private _value: T public readonly __v_isRef = true constructor(private _rawValue: T, public readonly _shallow = false) { // 如果是浅响应则无论是引用类型还是基础类型都直接存储原始数据 this._value = _shallow ? _rawValue : convert(_rawValue) // 注意covert在下面讲解下 } get value() { // get触发依赖收集,toRaw(this)是被ref(data)包裹的原始数据data track(toRaw(this), TrackOpTypes.GET, value) return this._value } set value(newVal) { // 如果新旧值没有变化则不处理 if (hasChanged(toRaw(newVal), this._rawValue)) { this._rawValue = newVal this._value = this._shallow ? newVal : convert(newVal) // trigger 触发依赖此属性的effect重新执行,toRaw(this)是被ref(data)包裹的原始数据data trigger(toRaw(this), TriggerOpTypes.SET, value, newVal) } } } // 如果被const r = ref(data)包裹的原始数据data是引用类型,则对引用类型进行响应式处理,否则直接返回基本类型。 // 为什么要这样处理呢? // 因为如果不这样做的话,r.value的变化会被get set拦截处理,但是r.value.xxx无法被拦截失去了响应 const convert = <T extends unknown>(val: T): T => isObject(val) ? reactive(val) : val // 将reactive数据和ref数据的行为统一成reactive行为 // 主要用于template中html标签属性绑定时不需要写r.value, 直接写r即可 // 让ref类型的源码下载数据具有reactive类型的行为(不需要通过r.value.xxx访问,直接r.xxx) export function proxyRefs<T extends object>( objectWithRefs: T ): ShallowUnwrapRef<T> { return isReactive(objectWithRefs) ? objectWithRefs : new Proxy(objectWithRefs, shallowUnwrapHandlers) } const shallowUnwrapHandlers: ProxyHandler<any> = { get: (target, key, receiver) => unref(Reflect.get(target, key, receiver)), set: (target, key, value, receiver) => { const oldValue = target[key] if (isRef(oldValue) && !isRef(value)) { oldValue.value = value return true } else { return Reflect.set(target, key, value, receiver) } }, } export function unref<T>(ref: T): T extends Ref<infer V> ? V : T { return isRef(ref) ? (ref.value as any) : ref } // 将reactive对象的某个属性变成ref类型 // const r = toRef(reactive({ }),attr) export function toRef<T extends object, K extends keyof T>( object: T, key: K ): ToRef<T[K]> { return isRef(object[key]) ? object[key] : (new ObjectRefImpl(object, key) as any) } class ObjectRefImpl<T extends object, K extends keyof T> { public readonly __v_isRef = true constructor(private readonly _object: T, private readonly _key: K) { } get value() { return this._object[this._key] } set value(newVal) { this._object[this._key] = newVal } } // 将reactive对象的所有属性变成ref类型 // const obj = toRefs(reactive({ })) export function toRefs<T extends object>(object: T): ToRefs<T> { if (__DEV__ && !isProxy(object)) { console.warn(`toRefs() expects a reactive object but received a plain one.`) } const ret: any = isArray(object) ? new Array(object.length) : { } for (const key in object) { ret[key] = toRef(object, key) } return ret }effect
effect的源码非常具有跳跃性,需要多看上面的响应式原理架构图才能理解 watch\computed\render的时候都会创建effect,所以入口来源复杂,入参也复杂 reactive\ref\computed\watch\render\update访问都会级联触发该属性依赖收集track reactive\ref\computed修改都会级联触发trigger执行该属性的副作用 effectStack 是当前待执行的effect栈 activeEffect 是全局正在触发的effect,每当一个effect触发新的effect入栈的时候activeEffect都会更新为新的,执行完毕后又从effectStack pop出前一个 当调用watch(getter,scheduler,{ onTrack,onTrigger})时,可以简单的理解为触发 effect(getter, { lazy: true, // 非computed onTrack, onTrigger, scheduler }) export function effect<T = any>( fn: () => T, options: ReactiveEffectOptions = EMPTY_OBJ ): ReactiveEffect<T> { if (isEffect(fn)) { fn = fn.raw } const effect = createReactiveEffect(fn, options) if (!options.lazy) { // computed属性懒执行,其他副作用执行触发依赖收集 effect() } return effect } function createReactiveEffect<T = any>( fn: () => T, options: ReactiveEffectOptions ): ReactiveEffect<T> { const effect = function reactiveEffect(): unknown { if (!effect.active) { return options.scheduler ? undefined : fn() } // effectStack 是当前有效的待执行effect栈 if (!effectStack.includes(effect)) { cleanup(effect) // 可能有多个响应式属性都会触发该effect,但是该effect只会执行一次不会重复执行,所以从所有依赖属性的副作用数组中删除该effect try { enableTracking() // 只有副作用原函数fn()执行期间收集其依赖的响应式属性,执行完毕后不能再收集 effectStack.push(effect) activeEffect = effect // 当前副作用为全局正在执行的副作用 return fn() } finally { // 当前副作用依赖收集完成后退栈并不再触发依赖收集 effectStack.pop() resetTracking() activeEffect = effectStack[effectStack.length - 1] } } } as ReactiveEffect effect.id = uid++ effect.allowRecurse = !!options.allowRecurse effect._isEffect = true effect.active = true effect.raw = fn // 存储原始副作用函数 effect.deps = [] // 该副作用依赖的所有响应式属性 effect.options = options return effect } // 可能有多个响应式属性都会触发该effect,但是该effect只会执行一次不会重复执行,所以从所有依赖属性的副作用数组中删除该effect function cleanup(effect: ReactiveEffect) { const { deps } = effect if (deps.length) { for (let i = 0; i < deps.length; i++) { deps[i].delete(effect) } deps.length = 0 } } export const enum TrackOpTypes { GET = get, HAS = has, ITERATE = iterate } export const enum TriggerOpTypes { SET = set, ADD = add, DELETE = delete, CLEAR = clear } // 依赖收集副作用函数 export function track(target: object, type: TrackOpTypes, key: unknown) { if (!shouldTrack || activeEffect === undefined) { return } let depsMap = targetMap.get(target) // targetMap存储所有的proxy代理原target if (!depsMap) { targetMap.set(target, (depsMap = new Map())) } let dep = depsMap.get(key) // depsMap存储某个proxy代理原target里的所有属性 if (!dep) { depsMap.set(key, (dep = new Set())) // dep存储某个proxy代理原target里的某个属性的所有副作用effect } if (!dep.has(activeEffect)) { dep.add(activeEffect) activeEffect.deps.push(dep) if (__DEV__ && activeEffect.options.onTrack) { // watch(key,()=>{ },{ onTrack}) 里的onTrack触发此处 // watchEffect(()=>{ },{ onTrack}) 里的onTrack触发此处 activeEffect.options.onTrack({ effect: activeEffect, target, type, key }) } } } // 依赖副作用触发函数 export function trigger( target: object, type: TriggerOpTypes, key?: unknown, newValue?: unknown, oldValue?: unknown, oldTarget?: Map<unknown, unknown> | Set<unknown> ) { const depsMap = targetMap.get(target) if (!depsMap) { return } const effects = new Set<ReactiveEffect>() // 存储本次操作导致的需要执行的副作用集合 const add = (effectsToAdd: Set<ReactiveEffect> | undefined) => { if (effectsToAdd) { effectsToAdd.forEach(effect => { if (effect !== activeEffect || effect.allowRecurse) { effects.add(effect) } }) } } if (type === TriggerOpTypes.CLEAR) { // 对某个数组或集合执行清空操作时,该数组的所有副作用都要添加到待执行数组中 depsMap.forEach(add) } else if (key === length && isArray(target)) { // 当访问数组length属性时只添加其相关的副作用到待执行数组中 depsMap.forEach((dep, key) => { if (key === length || key >= (newValue as number)) { add(dep) } }) } else { // schedule runs for SET | ADD | DELETE if (key !== void 0) { // void 0 === undefined add(depsMap.get(key)) } // also run for iteration key on ADD | DELETE | Map.SET switch (type) { case TriggerOpTypes.ADD: if (!isArray(target)) { add(depsMap.get(ITERATE_KEY)) if (isMap(target)) { add(depsMap.get(MAP_KEY_ITERATE_KEY)) } } else if (isIntegerKey(key)) { // new index added to array -> length changes add(depsMap.get(length)) } break case TriggerOpTypes.DELETE: if (!isArray(target)) { add(depsMap.get(ITERATE_KEY)) if (isMap(target)) { add(depsMap.get(MAP_KEY_ITERATE_KEY)) } } break case TriggerOpTypes.SET: if (isMap(target)) { add(depsMap.get(ITERATE_KEY)) } break } } // 创建执行副作用的函数 const run = (effect: ReactiveEffect) => { if (__DEV__ && effect.options.onTrigger) { effect.options.onTrigger({ effect, target, key, type, newValue, oldValue, oldTarget }) } if (effect.options.scheduler) { // scheduler 可以简单理解为watch(key,cb)的cb effect.options.scheduler(effect) } else { effect() } } effects.forEach(run) }computed
// 运用ts函数重载机制让ref有3种不同类型的入参、返回 export function computed<T>(getter: ComputedGetter<T>): ComputedRef<T> export function computed<T>( options: WritableComputedOptions<T> ): WritableComputedRef<T> export function computed<T>( getterOrOptions: ComputedGetter<T> | WritableComputedOptions<T> ) { let getter: ComputedGetter<T> let setter: ComputedSetter<T> if (isFunction(getterOrOptions)) { getter = getterOrOptions setter = __DEV__ ? () => { console.warn(Write operation failed: computed value is readonly) } : NOOP } else { getter = getterOrOptions.get setter = getterOrOptions.set } return new ComputedRefImpl( getter, setter, isFunction(getterOrOptions) || !getterOrOptions.set // isReadonly ) as any } class ComputedRefImpl<T> { private _value!: T // 当前计算属性返回值 private _dirty = true // 是否有依赖属性变化导致需要重新求值 public readonly effect: ReactiveEffect<T> public readonly __v_isRef = true; public readonly [ReactiveFlags.IS_READONLY]: boolean //是否只读 constructor( getter: ComputedGetter<T>, private readonly _setter: ComputedSetter<T>, isReadonly: boolean ) { this.effect = effect(getter, { lazy: true, // 初始化时不求值,触发get的时候才求值 scheduler: () => { if (!this._dirty) { // 依赖属性发生变化,当前计算属性变脏了,在下次get访问时需要重新求值;触发依赖该计算属性的副作用执行 this._dirty = true trigger(toRaw(this), TriggerOpTypes.SET, value) } } }) this[ReactiveFlags.IS_READONLY] = isReadonly } get value() { if (this._dirty) { // 第一次访问或依赖属性发生变化才重新求值 this._value = this.effect() this._dirty = false } track(toRaw(this), TrackOpTypes.GET, value) return this._value } set value(newValue: T) { this._setter(newValue) } }