人工智能

酷极了!5分钟用Python理解人工智能优化算法

时间:2010-12-5 17:23:32  作者:域名   来源:IT科技类资讯  查看:  评论:0
内容摘要:概述梯度下降是神经网络中流行的优化算法之一。一般来说,我们想要找到最小化误差函数的权重和偏差。梯度下降算法迭代地更新参数,以使整体网络的误差最小化。梯度下降是迭代法的一种,可以用于求解最小二乘问题(线

 概述

梯度下降是酷极神经网络中流行的优化算法之一。一般来说,分钟法我们想要找到最小化误差函数的解人权重和偏差。梯度下降算法迭代地更新参数,工智以使整体网络的化算误差最小化。

梯度下降是酷极迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的分钟法模型参数,即无约束优化问题时,解人梯度下降(Gradient Descent)是工智最常采用的方法之一,另一种常用的化算方法是最小二乘法。在求解损失函数的酷极最小值时,可以通过梯度下降法来一步步的分钟法迭代求解,得到最小化的解人损失函数和模型参数值。反过来,工智如果我们需要求解损失函数的化算最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,网站模板分别为随机梯度下降法和批量梯度下降法。

该算法在损失函数的梯度上迭代地更新权重参数,直至达到最小值。换句话说,我们沿着损失函数的斜坡方向下坡,直至到达山谷。基本思想大致如图3.8所示。如果偏导数为负,则权重增加(图的左侧部分),如果偏导数为正,则权重减小(图中右半部分) 42 。学习速率参数决定了达到最小值所需步数的大小。

图3.8 随机梯度最小化的基本思想

误差曲面

寻找全局最佳方案的同时避免局部极小值是一件很有挑战的事情。这是因为误差曲面有很多的峰和谷,如图3.9所示。误差曲面在一些方向上可能是高度弯曲的,但在其他方向是平坦的。这使得优化过程非常复杂。为了避免网络陷入局部极小值的站群服务器境地,通常要指定一个冲量(momentum)参数。

图3.9 典型优化问题的复杂误差曲面

我很早就发现,使用梯度下降的反向传播通常收敛得非常缓慢,或者根本不收敛。在编写第一个神经网络时,我使用了反向传播算法,该网络包含一个很小的数据集。网络用了3天多的时间才收敛到一个解决方案。幸亏我采取一些措施加快了处理过程。

说明 虽然反向传播相关的学习速率相对较慢,但作为前馈算法,其在预测或者分类阶段是相当快速的。

随机梯度下降

传统的梯度下降算法使用整个数据集来计算每次迭代的梯度。对于大型数据集,这会导致冗余计算,因为在每个参数更新之前,非常相似的样本的梯度会被重新计算。随机梯度下降(SGD)是真实梯度的近似值。在每次迭代中,香港云服务器它随机选择一个样本来更新参数,并在该样本的相关梯度上移动。因此,它遵循一条曲折的通往极小值的梯度路径。在某种程度上,由于其缺乏冗余,它往往能比传统梯度下降更快地收敛到解决方案。

说明 随机梯度下降的一个非常好的理论特性是,如果损失函数是凸的 43 ,那么保证能找到全局最小值。

代码实践

理论已经足够多了,接下来敲一敲实在的代码吧。

一维问题

假设我们需要求解的目标函数是:

()=2+1f(x)=x2+1

显然一眼就知道它的最小值是 =0x=0 处,但是这里我们需要用梯度下降法的 Python 代码来实现。

#!/usr/bin/env python # -*- coding: utf-8 -*- """ 一维问题的梯度下降法示例 """ def func_1d(x):  """  目标函数  :param x: 自变量,标量  :return: 因变量,标量  """  return x ** 2 + 1 def grad_1d(x):  """  目标函数的梯度  :param x: 自变量,标量  :return: 因变量,标量  """  return x * 2 def gradient_descent_1d(grad, cur_x=0.1, learning_rate=0.01, precision=0.0001, max_iters=10000):  """  一维问题的梯度下降法  :param grad: 目标函数的梯度  :param cur_x: 当前 x 值,通过参数可以提供初始值  :param learning_rate: 学习率,也相当于设置的步长  :param precision: 设置收敛精度  :param max_iters: 最大迭代次数  :return: 局部最小值 x*  """  for i in range(max_iters):  grad_cur = grad(cur_x)  if abs(grad_cur) < precision:  break # 当梯度趋近为 0 时,视为收敛  cur_x = cur_x - grad_cur * learning_rate  print("第", i, "次迭代:x 值为 ", cur_x)  print("局部最小值 x =", cur_x)  return cur_x if __name__ == __main__:  gradient_descent_1d(grad_1d, cur_x=10, learning_rate=0.2, precision=0.000001, max_iters=10000) 

就是这么酷吧!用Python理解剃度下降!

copyright © 2025 powered by 益强资讯全景  滇ICP备2023006006号-31sitemap